Jméno: Ing. Tomáš Bystroň, Ph.D.
Funkce(zařazení): Výzkumný pracovník
Místnost: A 23
Telefon: 220 444 272
e-mail: Tomas.Bystron@vscht.cz
Pracovní skupina: Technická elektrochemie
N105032 | Teoretické základy elektrochemie |
N963014 | Bakalářská práce |
N963008 | Diplomová práce |
2000 | - | 2005 | Studium na VŠCHT, diplomová práce na téma: Potenciálově modulovaná výměna iontů v polypyrrolovém filmu, školitel prof. Dr. Ing. Karel Bouzek |
2005 | - | 2009 | Doktorské studium, Ústav anorganické technologie, VŠCHT Praha, téma disertační práce: „Studie anodické methoxylace 4-methylanisolu“, školitel: prof. Dr. Ing. Karel Bouzek |
2009 | - | 2010 | Výzkumný pracovník, Imperial College London, Velká Británie |
2010 | - | 2011 | Soukromý učitel chemie, Londýn, Velká Británie |
2011 | - | 2019 | Výzkumný pracovník, Ústav anorganické technologie, VŠCHT Praha |
Studium kinetiky a mechanismu elektrodových dějů, elektroorganická chemie, palivové články |
2003 | 6 měsíců na NTNU v Trondheimu, Norsko; prof. Reidar Tunold | ||
2005 | 3 měsíce na ENSIC v Nancy, Francie; prof. François Lapicque |
Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Selektivní oxidace alkoholů na aldehydy, ketony, karboxylové sloučeniny a jejich deriváty představuje klíčový krok při výrobě řady léčiv a jiných chemických specialit. V praxi používaná selektivní oxidační činidla ve své struktuře většinou obsahují přechodné kovy jako Cr, Mn, Ni či Ru. To vzhledem k toxicitě těchto kovů výrazně zvyšuje náklady na zpracování a ekologickou likvidaci odpadů. Adekvátní náhradou těchto látek jsou benigní oxidační činidla na bázi hypervalentních sloučenin jódu. Příkladem může být 2-jodylbenzoová kyselina, často používaná v kombinaci s peroxosíranem jako koncovým oxidačním činidlem. Z důvodu nebezpečí spojeného se skladováním větších množství nestabilního peroxosíranu se však uvedeného postupu využívá pouze v laboratorním měřítku. Řešením tohoto problému může být elektrochemická generace příslušného oxidantu z jeho stabilního prekurzoru. Cílem této práce je studium elektrochemické syntézy vybraných oxidačních činidel obsahujících atom hypervalentního jódu.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Železany jsou velmi silná oxidační činidla využitelná při čištění odpadních vod, organických syntézách a v energetickém průmyslu. Jejich výhodou je skutečnost, že produktem jejich redukce jsou nezávadné sloučeniny FeIII. V průmyslové praxi se však železany nepoužívají vzhledem ke své vysoké ceně zapříčiněné komplikovanou syntézou. Jednou z metod, jak lze železany jednoduše připravit je anodická oxidace sloučenin FeIII na vhodné inertní elektrodě. Ta musí být nejen odolná vůči silným oxidačním účinkům železanů, ale musí také upřednostňovat syntézu železanu před rekcí vývoje O2. Jako vhodný materiál pro inertní anodu se jeví např. borem dopovaná diamantová elektroda (BDD) , které jsou známy svou značnou chemickou stabilitou a vysokým přepětím pro vývoj O2. V rámci práce bude provedena základní charakterizace elektrochemického chování sloučenin FeIII na BDD popř. jiné vhodné elektrodě s cílem posoudit možnost využití těchto elektrody při syntéze železanů.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Palivové články představují perspektivní technologii pro konverzi energie chemické na enerii elektrickou. Mezi zásadní výhody této technologie patří ve srovnání s tepelnými stroji výrazně vyšší účinnost a v závislosti na použitém palivu také omezení emisí. Jedním ze zajímavých zástupců palivových článků je středněteplotní palivový článek typu PEM (proton exchange membrane), který je provozován při teplotách v rozmezí 100 až 200 °C a nejčastěji obsahuje membránu na bázi polybenzimidazolu dopovaného kyselinou fosforečnou, která však není při provozních podmínkách palivového článku stabilní a částečně se redukuje na sloučeniny fosforu v nižším oxidačním stupni. Cílem této práce je prostudovat elektrochemické vlastnosti vybraných kyselin fosforu na vybraných uhlíkových elektrodách při podmínkách relevantních pro provoz zmíněného palivového článku.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Konzultant práce: Ing. Martin Prokop, Ph.D.
Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Palivové články představují perspektivní technologii pro konverzi energie chemické na enerii elektrickou. Mezi zásadní výhody této technologie patří ve srovnání s tepelnými stroji výrazně vyšší účinnost a v závislosti na použitém palivu také omezení emisí. Jedním ze zajímavých zástupců palivových článků je středněteplotní palivový článek typu PEM (proton exchange membrane), který je provozován při teplotách v rozmezí 100 až 200 °C a nejčastěji obsahuje membránu na bázi polybenzimidazolu dopovaného kyselinou fosforečnou, která však není při provozních podmínkách palivového článku stabilní a částečně se redukuje na sloučeniny fosforu v nižším oxidačním stupni. Cílem této práce je prostudovat elektrochemické vlastnosti vybraných kyselin fosforu na vybraných uhlíkových elektrodách při podmínkách relevantních pro provoz zmíněného palivového článku.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Konzultant práce: Ing. Martin Prokop, Ph.D.
Selektivní oxidace alkoholů na aldehydy, ketony, karboxylové sloučeniny a jejich deriváty představuje klíčový krok při výrobě řady léčiv a jiných chemických specialit. V praxi používaná selektivní oxidační činidla ve své struktuře většinou obsahují přechodné kovy jako Cr, Mn, Ni či Ru. To vzhledem k toxicitě těchto kovů výrazně zvyšuje náklady na zpracování a ekologickou likvidaci odpadů. Adekvátní náhradou těchto látek jsou benigní oxidační činidla na bázi hypervalentních sloučenin jódu. Příkladem může být 2-jodylbenzoová kyselina, často používaná v kombinaci s peroxosíranem jako koncovým oxidačním činidlem. Z důvodu nebezpečí spojeného se skladováním větších množství nestabilního peroxosíranu se však uvedeného postupu využívá pouze v laboratorním měřítku. Řešením tohoto problému může být elektrochemická generace příslušného oxidantu z jeho stabilního prekurzoru. Cílem této práce je studium elektrochemické syntézy vybraných oxidačních činidel obsahujících atom hypervalentního jódu.
Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
VŠCHT Praha
Ústav anorganické technologie
Technická 5
166 28 Praha 6
tel.: +420 220 443 801
e-mail: Jana.Jirousova@vscht.cz