Zaměstnanci

Jméno: Ing. Tomáš Bystroň, Ph.D.

Funkce(zařazení): Výzkumný pracovník

Místnost: A 23

Telefon: 220 444 272

e-mail: Tomas.Bystron@vscht.cz

Pracovní skupina: Technická elektrochemie

Výuka

N105032Teoretické základy elektrochemie
N963014Bakalářská práce
N963008Diplomová práce

Odborný životopis

2000-2005Studium na VŠCHT, diplomová práce na téma: Potenciálově modulovaná výměna iontů v polypyrrolovém filmu, školitel prof. Dr. Ing. Karel Bouzek
2005-2009Doktorské studium, Ústav anorganické technologie, VŠCHT Praha, téma disertační práce: „Studie anodické methoxylace 4-methylanisolu“, školitel: prof. Dr. Ing. Karel Bouzek
2009-2010Výzkumný pracovník, Imperial College London, Velká Británie
2010-2011Soukromý učitel chemie, Londýn, Velká Británie
2011-2017Výzkumný pracovník, Ústav anorganické technologie, VŠCHT Praha

Odborné zaměření

Studium kinetiky a mechanismu elektrodových dějů, elektroorganická chemie, palivové články

Zahraniční stáže

20036 měsíců na NTNU v Trondheimu, Norsko; prof. Reidar Tunold
20053 měsíce na ENSIC v Nancy, Francie; prof. François Lapicque

Témata závěrečných prací

Pasivace Ti a její omezení vhodnou povrchovou úpravou

Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Elektrochemická redukce CO2 jako zdroj jednoduchých organických sloučenin

Elektrochemická redukce CO2 může sloužit jako prakticky nevyčerpatelný zdroj jednoduchých organických sloučenin jako jsou formaldehyd, methanol či kyselina mravenčí, které představují výchozí suroviny v řadě chemických výrob. Základním předpokladem je samozřejmě zdroj levné elektrické energie. V rámci bakalářské práce bude proveden základní screening s cílem nalezení vhodného materiálu elektrody/katalyzátoru pro syntézu těchto látek.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Elektrochemická syntéza vybraných selektivních oxidačních činidel využitelných při syntéze léčiv

Selektivní oxidace alkoholů na aldehydy, ketony, karboxylové sloučeniny a jejich deriváty představuje klíčový krok při výrobě řady léčiv a jiných chemických specialit. V praxi používaná selektivní oxidační činidla ve své struktuře většinou obsahují přechodné kovy jako Cr, Mn, Ni či Ru. To vzhledem k toxicitě těchto kovů výrazně zvyšuje náklady na zpracování a ekologickou likvidaci odpadů. Adekvátní náhradou těchto látek jsou benigní oxidační činidla na bázi hypervalentních sloučenin jódu. Příkladem může být 2-iodylbenzoová kyselina, často používaná v kombinaci s peroxosíranem jako koncovým oxidačním činidlem. Z důvodu nebezpečí spojeného se skladováním větších množství nestabilního peroxosíranu se však uvedeného postupu využívá pouze v laboratorním měřítku. Řešením tohoto problému může být elektrochemická generace příslušného oxidantu z jeho stabilního prekurzoru. Cílem této práce je nalezení materiálu anody a podmínek vhodných pro anodickou generaci vybraných oxidačních činidel obsahujících atom hypervalentního jódu.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Elektrochemická syntéza železanu

Železany jsou velmi silná oxidační činidla využitelná při čištění odpadních vod, organických syntézách a v energetickém průmyslu. Jejich výhodou je skutečnost, že produktem jejich redukce jsou nezávadné sloučeniny FeIII. V průmyslové praxi se však železany nepoužívají vzhledem ke své vysoké ceně zapříčiněné komplikovanou syntézou. Jednou z metod, jak lze železany jednoduše připravit, je anodická oxidace sloučenin FeIII na vhodné inertní elektrodě. Ta musí být nejen odolná vůči silným oxidačním účinkům železanů, ale musí také upřednostňovat syntézu železanu před rekcí vývoje O2. Jako vhodný materiál pro inertní anodu se jeví např. borem dopovaná diamantová elektroda (BDD), které jsou známy svou značnou chemickou stabilitou a vysokým přepětím pro vývoj O2. V rámci práce bude provedena základní charakterizace elektrochemického chování sloučenin FeIII na BDD popř. jiné vhodné elektrodě s cílem posoudit možnost využití těchto elektrod při syntéze železanů.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Elektrochemie kyselin fosforu na Pt elektrodě

Palivové články představují perspektivní technologii pro konverzi energie chemické na energii elektrickou. Mezi zásadní výhody této technologie patří ve srovnání s tepelnými stroji výrazně vyšší účinnost a v závislosti na použitém palivu také omezení emisí. Jedním ze zajímavých zástupců palivových článků je středněteplotní palivový článek typu PEM (proton exchange membrane), který je provozován při teplotách v rozmezí 100 až 200 °C a nejčastěji obsahuje membránu na bázi polybenzimidazolu dopovaného kyselinu fosforečnou, která však není při provozních podmínkách palivového článku stabilní a částečně se redukuje na sloučeniny fosforu v nižším oxidačním stupni. Cílem této práce je prostudovat elektrochemické vlastnosti vybraných kyselin fosforu na Pt elektrodě při podmínkách relevantních pro provoz zmíněného palivového článku.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Konzultant práce: Ing. Martin Prokop

Elektrokatalytický vývoj vodíku na Ni katodě aktivované redukovaným grafenoxidem

Alkalická elektrolýza vody představuje již dlouhodobě zavedený průmyslový proces bez výraznějších nároků na obsluhu. Jeho nevýhodou je nízká energetická účinnost a nízká intenzita. Obě tato negativa jsou do jisté míry spojena s nízkou rychlostí reakce vývoje vodíku na katodě, která je v průmyslovém elektrolyzéru vyrobena z Ni. Ni je z krátkodobého hlediska relativně dobrým katalyzátorem pro reakci vývoje vodíku v alkalickém prostředí. Při dlouhodobějším provozu se však jeho povrch pokrývá vrstvou hydridu, která tuto reakci zpomaluje. Ukázalo se, že přítomnost redukovanéno grafen oxidu na povrchu Ni elektrody zamezuje vzniku této hydridové vrstvy. Cílem práce bude studium mechanismu katodického vývoje vodíku v přítomnosti redukovaného grafen oxidu na povrchu Ni elektrody.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Pasivace Ti a její omezení vhodnou povrchovou úpravou

Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Pasivace Ti a její omezení vhodnou povrchovou úpravou

Elektrolýza vody v elektrolyzéru s protonově vodivou membránou (PEM) představuje jednu z klíčových technologií tzv. "vodíkové ekonomiky". Výhodou PEM elektrolýzy oproti dlouhodobě průmyslově zavedenému procesu elektrolýzy alkalické vody je zejména mnohem vyšší intenzita, energetická účinnost a flexibilita tohoto procesu. Na druhou stranu v PEM elektrolyzéru jsou kladeny značné nároky na použité materiály a zejména na materiály anody. To vyplývá zejména z kombinace nízkého pH a vysokého potenciálu na anodě elektrolyzéru. Cílem práce bude studium různých možností povrchové úpravy Ti, který se používá jako plynově difuzní vrstva anody, za účelem zvýšení jeho odolnosti vůči nadměrné pasivaci, která neúměrně zvyšuje energetické ztráty v průběhu elektrolýzy. Různě povrchově ošetřené Ti materiály budou otestovány v laboratorním PEM elektrolyzéru vody.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.

Elektrochemie kyselin fosforu na Pt elektrodě

Palivové články představují perspektivní technologii pro konverzi energie chemické na energii elektrickou. Mezi zásadní výhody této technologie patří ve srovnání s tepelnými stroji výrazně vyšší účinnost a v závislosti na použitém palivu také omezení emisí. Jedním ze zajímavých zástupců palivových článků je středněteplotní palivový článek typu PEM (proton exchange membrane), který je provozován při teplotách v rozmezí 100 až 200 °C a nejčastěji obsahuje membránu na bázi polybenzimidazolu dopovaného kyselinu fosforečnou, která však není při provozních podmínkách palivového článku stabilní a částečně se redukuje na sloučeniny fosforu v nižším oxidačním stupni. Cílem této práce je prostudovat elektrochemické vlastnosti vybraných kyselin fosforu na Pt elektrodě při podmínkách relevantních pro provoz zmíněného palivového článku.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.
Konzultant práce: Ing. Martin Prokop

Elektrochemická syntéza vybraných selektivních oxidačních činidel využitelných při syntéze léčiv

Selektivní oxidace alkoholů na aldehydy, ketony, karboxylové sloučeniny a jejich deriváty představuje klíčový krok při výrobě řady léčiv a jiných chemických specialit. V praxi používaná selektivní oxidační činidla ve své struktuře většinou obsahují přechodné kovy jako Cr, Mn, Ni či Ru. To vzhledem k toxicitě těchto kovů výrazně zvyšuje náklady na zpracování a ekologickou likvidaci odpadů. Adekvátní náhradou těchto látek jsou benigní oxidační činidla na bázi hypervalentních sloučenin jódu. Příkladem může být 2-iodylbenzoová kyselina, často používaná v kombinaci s peroxosíranem jako koncovým oxidačním činidlem. Z důvodu nebezpečí spojeného se skladováním větších množství nestabilního peroxosíranu se však uvedeného postupu využívá pouze v laboratorním měřítku. Řešením tohoto problému může být elektrochemická generace příslušného oxidantu z jeho stabilního prekurzoru. Cílem této práce je nalezení materiálu anody a podmínek vhodných pro anodickou generaci vybraných oxidačních činidel obsahujících atom hypervalentního jódu.

Vedoucí práce: Ing. Tomáš Bystroň, Ph.D.